精英家教网 > 初中数学 > 题目详情

已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.

求证:∠A=∠C.

证明:∵BE、DF分别平分∠ABC、∠ADC

∴ ∠1=∠ABC,∠3=∠ADC       

∵∠ABC=∠ADC(已知)

∴∠1=∠FDC             

∵∠1=∠2

∴∠2=∠FDC              

∴AB∥DC                 

∴∠A+∠ADC=180º ,∠C+∠ABC=180º      

∴∠A=∠C 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,∠ADC=90°,DC∥AB,BA=BC,AE⊥BC,垂足为点E,点F为AC的中点.
(1)求证:∠AFB=90°;
(2)求证:△ADC≌△AEC;
(3)连接DE,试判断DE与BF的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,A、D、B三点在同一条直线上,△ADC、△BDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,∠ADC=90°,DC∥AB,BA=BC,AE⊥BC,垂足为点E,点F为AC的中点.
(1)求证:∠AFB=90°;
(2)求证:△ADC≌△AEC;
(3)连接DE,试判断DE与BF的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,∠ADC=90°,DCAB,BA=BC,AE⊥BC,垂足为点E,点F为AC的中点.
(1)求证:∠AFB=90°;
(2)求证:△ADC≌△AEC;
(3)连接DE,试判断DE与BF的位置关系,并证明.
精英家教网

查看答案和解析>>

同步练习册答案