精英家教网 > 初中数学 > 题目详情
精英家教网在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,3),作出△ABC关于y轴的对称图形△A1B1C1,△A1B1C1关于直线l的对称图形△A2B2C2,并写出△A2B2C2的三个顶点的坐标;
(2)在直线l上是否存在一点P,使其到A2、C2两点的距离和最小?如果存在,请求出符合条件的点P的坐标;如果不存在,请说明理由.
分析:(1)从直角坐标系中先找到三点的坐标,然后再向y轴引垂线并延长相同长度,得到对应点,顺次连接得到△A1B1C1,△A1B1C1的各点向y轴引垂线并延长相同长度,得到对应点,顺次连接得到△A2B2C2
(2)有,根据两点间,直线最短,可利用轴对称图形的性质找到此点.
解答:精英家教网解:(1)作图,A2(4,0)B2(5,0)C2(5,3);(4分)
(2)连接A1C2,交直线l于点P,则点P即为所求
满足PA2+PC2的和最小.(5分)
设直线A1C2的解析式为:
y=kx+b
则由题意得:
2k+b=0
5k+b=3

解得
k=1
b=-2

∴直线A1C2解析式为y=x-2(7分)
当x=3时,y=1
∴点P坐标(3,1).(8分)
点评:本题综合考查了直角坐标系和轴对称图形的性质.学生在做题时要注意知识的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案