精英家教网 > 初中数学 > 题目详情
已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:
(1)△ACD≌△CBF;
(2)四边形CDEF为平行四边形.
分析:(1)根据等边三角形的性质得出AC=CB,∠ACD=∠CBF=60°,进而利用SAS得出即可;
(2)利用全等三角形判定与性质得出AD=CF,∠CAD=∠BCF,进而得出ED
.
FC即可得出答案.
解答:(1)证明:∵△ABC为等边三角形,
∴AC=CB,∠ACD=∠CBF=60°,
∵在△ACD和△CBF中,
AC=BC
∠ACD=∠CBF
CD=BF

∴△ACD≌△CBF(SAS);

(2)证明:∵△ACD≌△CBF,
∴AD=CF,∠CAD=∠BCF.
∵△AED为等边三角形,
∴∠ADE=60°,且AD=DE.
∴FC=DE.
∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,
∴∠EDB=∠BCF.
∴ED∥FC.
∵ED
.
FC,
∴四边形CDEF为平行四边形.
点评:此题主要考查了平行四边形的判定以及全等三角形的判定,根据已知等边三角形的性质得出△ACD≌△CBF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知:如图,在等边三角形ABC中,点D、E分别在边AB、BC的延长线上,且AD=BE,连接AE、CD.
(1)求证:△CBD≌△ACE;
(2)如果AB=3cm,那么△CBD经过怎样的图形运动后,能与△ACE重合?请写出你的具体方案.(可以选择的图形运动是指:平移、旋转、翻折)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE.
求证:DC=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP以点A为旋转中心顺时针旋转60°到线段AD,连接BD,下列结论:
①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+
9
4
3

其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在等边三角形ABC的三边上,分别取点D,E,F使AD=BE=CF.
求证:△DEF是等边三角形.

查看答案和解析>>

同步练习册答案