精英家教网 > 初中数学 > 题目详情

作业宝如图,已知抛物线y=数学公式x2+bx+c经过点B(-4,0)与点C(8,0),且交y轴于点A.
(1)求该抛物线的表达式,并写出其顶点坐标;
(2)将该抛物线向上平移4个单位,再向右平移m个单位,得到新抛物线.若新抛物线的顶点为P,联接BP,直线BP将△ABC分割成面积相等的两个三角形,求m的值.

解:(1)将点B(-4,0)与点C(8,0),代入解析式得:

解得:
∴该抛物线的表达式为:y=x2-x-8,
y=x2-x-8=(x2-4x)-8=(x-2)2-9,
∴顶点坐标为:(2,-9);

(2)∵y=x2-x-8交y轴于点A,
∴A(0,-8),
根据题意得出:平移后解析式为:y=(x-2-m)2-5,
∵直线BP将△ABC分割成面积相等的两个三角形,
∴P为AC中点,
∵A(0,-8),C(4,0),
∴AC的中点坐标为:(2,-4),
∴设BP的解析式为:y=ax+h,

解得:
∴BP的解析式为:y=-x-2,
即直线过BP中点P(2+m,-5),
-5=-(2+m)-2
解得:m=1.
分析:(1)利用待定系数法求二次函数解析式即可,进而利用配方法求出顶点坐标;
(2)利用三角形中线平分面积进而得出PP过AC中点,进而得出BP解析式,求出P点坐标即可得出答案.
点评:此题主要考查了二次函数综合应用以及待定系数法求二次和一次函数解析式,利用三角形中线平分面积得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案