精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知二次函数的图象与x轴的正半轴交于A 、B两点(点A在点B的左侧),与y轴交于点C .点A和点B间的距离为2, 若将二次函数的图象沿y轴向上平移3个单位时,则它恰好过原点,且与x轴两交点间的距离为4.
(1)求二次函数的表达式;
(2)在二次函数的图象的对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由;
(3)设二次函数的图象的顶点为D,在x轴上是否存在这样的点F,使得?若存在,求出点F的坐标;若不存在,请说明理由.
(1);(2)存在,(2,3);(3)存在,(-1,0)或(5,0).

试题分析:(1)根据平移的性质,得到对称轴承,从而由求得A,B的坐标,应用待定系数法即可求得二次函数的表达式.
(2)根据轴对称的性质,知直线AC与直线x=2的交点P就是到B、C两点距离之差最大的点,因此求出直线AC的方程,即可求得点P坐标.
(3)首先证明△BCD是直角三角形并求出BC,BD的值,得到,从而只要求出使时点F的坐标即可.
试题解析:(1)∵平移后的函数图象过原点且与x轴两交点间的距离为4,
∴平移后的函数图象与x轴两交点坐标为(0,0),(4,0)或(0,0),(-4,0).
∴它的对称轴为直线x=2或x=-2.
∵抛物线与x轴的正半轴交于A、B两点,
∴抛物线关于直线x=2对称.
∵它与x轴两交点间的距离为2,且点A 在点B的左侧,
∴其图象与x轴两交点的坐标为A(1,0)、B(3,0).
由题意知,二次函数的图象过C(0,-3),
∴设
,解得
∴二次函数的表达式为
(2)∵点B关于直线x=2的对称点为A(1,0),
设直线AC的解析式为
,解得
∴直线AC的解析式为
直线AC与直线x=2的交点P就是到B、C两点距离之差最大的点.
∵当x=2时,y=3,∴点P的坐标为(2,3) .
(3)在x轴上存在这样的点F,使得, 理由如下:
抛物线的顶点D的坐标为(2,1),
设对称轴与x轴的交点为点E,
中,∵,∴
中,∵,∴

中,∵,∴
轴,,∴
∵E(2,0),
∴符合题意的点F的坐标为F1(-1,0)或F2(5,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有(      )个。
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线轴交于点A,B,与y轴交于点C,其中点B的坐标为.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过A、C(0,4)两点,与x轴的另一交点是B.
(1)求抛物线的解析式;
(2)若点在第一象限的抛物线上,求点D关于直线BC的对称点的坐标;
(3)在(2)的条件下,过点D作DE⊥BC于点E,反比例函数的图象经过点E,点在此反比例函数图象上,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上.
(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣),对称轴是直线x=﹣.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数y=-2x2+4x-1,化为y=a(x-h)2+k的形式,结果为______,该函数图象不经过第______象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为(  )
A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2
C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )
A.k<-3B.k>-3C.k<3D.k>3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=        

查看答案和解析>>

同步练习册答案