精英家教网 > 初中数学 > 题目详情
如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )
A.R=4.8B.R=4.8或6≤R≤8
C.R=4.8或6≤R<8D.R=4.8或6<R≤8

过点C作CD⊥AB于点D,
∵AC=6,sinB=
3
5

∴AB=10,
∴CB=
102-62
=8,
当直线与圆相切时,d=R,圆与斜边AB只有一个公共点,圆与斜边AB只有一个公共点,
∴CD×AB=AC×BC,
∴CD=R=4.8,
当直线与圆如图所示也可以有一个交点,
∴6<R≤8,
故选:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.
(1)求证:ED是⊙O的切线;
(2)若⊙O半径为3,ED=4,求AB长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD为直径作⊙O1交AD于点E,过点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A(2,0),B(0,2
3
).
(1)求C,D两点的坐标;
(2)求证:EF为⊙O1的切线;
(3)线段CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与y轴相切.如果存在,请求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是⊙O的半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长交⊙O于K,连接KO,OD.
(1)证明:PC=PD;
(2)若该圆半径为5,CDKO,请求出OC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于(  )
A.70°B.64°C.62°D.51°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,AB是半圆O的直径,P是AB延长线上的一点,若OB=BP,则∠P的度数为(  )
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=
7
DE
的长是
3
π
3
.求证:直线BC与⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.
(1)求证:AC平分∠BAD;
(2)若sin∠BEC=
3
5
,求DC的长.

查看答案和解析>>

同步练习册答案