【题目】周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.
(1)小芳骑车的速度为 km/h,H点坐标 .
(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?
【答案】(1)20,H(,20);(2)小芳出发1.75小时候被妈妈追上,此时距家25km;(3)10.
【解析】试题分析:(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;
(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;
(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出求出当y=0时候的横坐标,再求出两横坐标的差值即可.
试题解析:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为: =,故点H的坐标为(,20);
(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时候被妈妈追上,此时距家25km;
(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.
科目:初中数学 来源: 题型:
【题目】四种统计图:①条形图;②扇形图;③折线图;④直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是:①与(a);②与(c);③与(d);④与(b). 其中选配方案正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指
A. 400名学生 B. 被抽取的50名学生
C. 400名学生的体重 D. 被抽取的50名学生的体重
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖北省荆州市第22题)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD。
(1)图中与∠COE互补的角是___________________; (把符合条件的角都写出来)
(2)如果∠AOC =∠EOF ,求∠AOC的度数。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com