精英家教网 > 初中数学 > 题目详情
12.适合下列条件的△ABC中,直角三角形的个数为(  )
①a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$;②∠A:∠B:∠C=1:2:3;③∠A=36°,∠C=54°;④a=1,b=2$\sqrt{2}$,c=3.
A.1个B.2个C.3个D.4个

分析 先根据勾股定理的逆定理对①④中△ABC的形状进行判断;再根据三角形的内角和是180°对②③中△ABC的形状作出判断即可.

解答 解:①∵△ABC中,a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$,
∴b2+c2≠a2
∴△ABC不是直角三角形;
②∵△ABC中,∠A:∠B:∠C=1:2:3,
∴设∠A=x,则∠B=2x,∠C=3x,
∵∠A+∠B+∠C=180°,
∴x+2x+3x=180°,解得x=30°,
∴∠C=3x=2×30°=90°,
∴△ABC是直角三角形;
③∵△ABC中,∠A=36°,∠C=54°,
∴∠B=90°,
∴△ABC是直角三角形;
④∵△ABC中,a=1,b=2$\sqrt{2}$,c=3,
∴12+(2$\sqrt{2}$)2=9=32,即a2+b2=c2
∴△ABC是直角三角形.
故选C.

点评 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.已知,在△AEF中,∠AEF=90°,AE=EF,△AEF与正方形ABCD有公共顶点A,连接CF,G为CF的中点,连接EG、DG.
(1)如图1,当点E在AC上,点F在AD上时,请猜想线段EG、DG的数量关系和位置关系,并证明你的结论;
(2)如图2,若将△AEF绕点A按顺时针方向旋转45°,使点E在AD上,其他条件不变,此时(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=5,BC=9,则EF=3$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若一个圆锥的主视图是一个腰长为6,底角为α的等腰三角形,且cosα=$\frac{1}{3}$,则其圆锥的全面积是(  )
A.B.16πC.27πD.36π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“定”在正方体的前面,那么这个正方体的后面是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若多项式x2-(k-1)x+4是完全平方式,则k=5或-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若$\sqrt{2x-1}$有意义,则x的取值范围是x≥$\frac{1}{2}$;若$\frac{\sqrt{x+1}}{x-1}$有意义,则x的取值范围是x≥-1且x≠1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.用你喜欢的方法解下列方程:
(1)(2x+1)2=81
(2)(2x+1)2=3(2x+1)
(3)3x2-1=4x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,我们称这个方程为“阿凡达”方程.已知ax2+bx+c=0是阿凡达方程,且有两个相等的实数根,则下列正确的是(  )
A.a=bB.a=cC.a=2b=cD.b=c

查看答案和解析>>

同步练习册答案