精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A开始以1 cm/s的速度沿AB边向点B移动,点Q从点B开始以2 cm/s的速度沿BC边向点C移动.如果P、Q分别从A、B同时出发,设移动的时间为t.
求:(1)当t为多少时,△PBQ的面积等于8 cm2
(2)当t为多少时,△PQD是以PD为斜边的直角三角形?
分析:(1)若移动时间为t,那么可以用含t的代数式表示△BPQ中BP,BQ,那么利用面积公式就可以得到关于t的一元二次方程,解即可,并要根据实际意义确定t的值;
(2)用含t的代数式分别表示图中各线段,在Rt△ADP中,利用勾股定理可求出DP2,同理,在Rt△DPQ中利用勾股定理也可以求出DP2,联合起来,得到关于t的一元二次方程,解即可,然后根据实际意义确定t的值.
解答:解:(1)AP=t,BP=6-t,BQ=2t,
△PBQ的面积等于8cm2
1
2
(6-t)×2t=8
整理得t2-6t+8=0,解得t1=2,t2=4
即当t为2秒或4秒时,△PBQ的面积等于8cm2

(2)易得PD2=t2+122,PQ2=(6-t)2+(2t)2,QD2=(12-2t)2+62
∵△PQD是以PD为斜边的直角三角形
∴PD2=PQ2+QD2,即t2+122=(6-t)2+(2t)2+(12-2t)2+62
整理得2t2-15t+18=0,解之得t1=6,t2=
3
2

即当t为
3
2
秒或6秒时,△PQD是以PD为斜边的直角三角形.
点评:本题利用了三角形的面积公式,勾股定理,以及解一元二次方程,及根据题意确定根有无实际意义等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案