精英家教网 > 初中数学 > 题目详情

抛物线y=-数学公式2的顶点坐标是________.

(-1,0)
分析:根据抛物线的顶点式进行解答即可.
解答:∵抛物线的解析式为:y=-(x+1)2
∴其顶点坐标为:(-1,0).
故答案为:(-1,0).
点评:本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形ABCD为矩形,CD边经过点P,AB=2AD.
(1)求矩形ABCD的面积;
(2)如图2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;
(3)若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积.(用a、b、c表示,并直接写出答案)
附加题:若将题中“y=x2”改为“y=ax2+bx+c”,“AB=2AD”条件不要,其他条件不变,探索矩形ABCD面精英家教网积为常数时,矩形ABCD需要满足什么条件并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如左图,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形ABCD为矩形,CD边经过点P,AB=2AD.
精英家教网
(1)求矩形ABCD的面积;
(2)如图,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;
(3)若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积(用a、b、c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=(2x+1)2+3的图象为抛物线,它的顶点坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=a(x+2)2+k与x轴交于A,0两点,将抛物线向上移动4个单位长度后得到一条新抛物线,它的顶点在x轴上,新抛物线上的D,E两点分别是A,O两点平移后的对应点.设两条抛物线、线段AD和线段OE围成的面积为S.P(m,n)是新抛物线上一个动点,且满足2m2+2m-n-w=0.
(1)求新抛物线的解析式.
(2)当m=-2时,点F的坐标为(-2w,w-4),试判断直线DF与AE的位置关系,并说明理由.
(3)当w的值最小时,求△AEP的面积与S的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知抛物线y=ax2的顶点为P,A、B是抛物线上两点,AB∥x轴,△PAB是等边三角形.
(1)若点B的横坐标为
3
,求点B、A的坐标及抛物线的函数表达式;
(2)①如图2,将(1)中抛物线进行平移,使点P的坐标变为(m,n),其他条件不变,请猜想△PAB的边长;
②若将抛物线“y=ax2”,改为抛物线“y=2x2-8x-2”,其他条件不变,求△PAB的边长;
(3)已知等边△MCD,CD∥x轴,抛物线l经过△MCD 的三个顶点,若点M的坐标为(m,n),△MCD的边长为2b,请直接写出抛物线l的函数表达式.(用含m、n、b的式子表示)
精英家教网

查看答案和解析>>

同步练习册答案