
或

分析:分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=

AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.
解答:

解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,
∴AD=

AB=

×2

=4,
∵∠ABC=45°,
∴BE=DE=

AD=

×4=2,BE⊥AD,
∵BC=1,
∴CE=BE-BC=2-1=1,
在Rt△CDE中,CD=

=

=

;
②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,
∴BD=AB=2

,
过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,
∴DE=BE=

×2

=2,
∵BC=1,
∴CE=BE+BC=2+1=3,
在Rt△CDE中,CD=

=

=

,
综上所述,线段CD的长为

或

.
故答案为:

或

.
点评:本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.