分析 (1)由全等三角形的判定定理SAS证得结论;
(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.
解答
(1)证明:如图,∵四边形ABCD是平行四边形,
∴∠A=∠C,
在△AEH与△CGF中,
$\left\{\begin{array}{l}{AE=CG}\\{∠A=∠C}\\{AH=CF}\end{array}\right.$,
∴△AEH≌△CGF(SAS);
(2)解:∵在ABCD中∠B=∠D,且AB=CD AD=BC
又∵AE=CG AH=CF,
∴BE=DG DH=BF,
∴△DHG≌△BFE,
∴HG=EF
又∵HE=GF
∴四边形EFGH是平行四边形
又∵EG平分∠HEF,
∴∠1=∠2
又∵HG∥EF,
∴∠2=∠3,
∴∠1=∠3,
∴HE=HG,
∴EFGH是菱形;
点评 本题考查了全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定.解题的关键是掌握两组对边相等的四边形是平行四边形,一组邻边相等的平行四边形是菱形.
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com