精英家教网 > 初中数学 > 题目详情
16、如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=5,∠B=60°,则AB的长为
2
分析:过A作AE∥CD交BC于E,推出四边形ADCE是平行四边形,得到AD=CE=3,∠AEB=∠C,根据等腰梯形的性质得出∠B=∠C=∠AEB=60°,推出△AEB是等边三角形,即可求出AB.
解答:解:过A作AE∥CD交BC于E,
∵AE∥CD,AD∥BC,
∴四边形ADCE是平行四边形,
∴AD=CE=3,∠AEB=∠C,
∵等腰梯形ABCD中,AD∥BC,
∴∠B=∠C=∠AEB=60°,
∴AE=AB,
∴△AEB是等边三角形,
∴AB=BE=5-3=2.
故答案为:2.
点评:本题主要考查对等腰梯形的性质,等腰三角形的性质,等边三角形的性质和判定等知识点的理解和掌握,能把等腰梯形转化成平行四边形和等腰三角形是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,对角线BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度数; 
(2)求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延长BC到E,使CE=AD.
(1)求证:BD=DE;
(2)当DC=2时,求梯形面积.

查看答案和解析>>

同步练习册答案