精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm.给出下列三个结论
① 以点C为圆心,2.3cm长为半径的圆与AB相离;
② 以点C为圆心,2.4cm长为半径的圆与AB相切;
③ 以点C为圆心,2.5cm长为半径的圆与AB相交;

则上述结论中正确的个数是


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个
D
此题是判断直线和圆的位置关系,需要求得直角三角形斜边上的高.先过C作CD⊥AB于D,根据勾股定理得AB=5,再根据直角三角形的面积公式,求得CD=2.4.①,即d>r,直线和圆相离,正确;②,即d=r,直线和圆相切,正确;③,d<r,直线和圆相交,正确.共有3个正确.
解:①,d>r,直线和圆相离,正确;
②,d=r,直线和圆相切,正确;
③,d<r,直线和圆相交,正确.
故选D.
点评:此题首先根据勾股定理以及直角三角形的面积公式求得直角三角形斜边上的高.掌握直线和圆的位置关系与数量之间的联系是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案