精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,AB是⊙O的直径,D是BC弧的中点,DE⊥AC交AC的延长线于E,
求证:DE是⊙O的切线.

证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵D为弧BC中点,即=
∴∠CAD=∠BAD,
∴∠CAD=∠ODA,
∴OD∥AE,
∵DE⊥AE,
∴DE⊥OD,
则DE为圆O的切线.
分析:连接OD,由D为弧BC中点,得到一对弧相等,利用等弧对等角得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AE平行,由AE垂直于DE,得到OD垂直于DE,即可得到DE为圆O的切线.
点评:此题考查了切线的性质,等弧对等角,以及平行线的判定与性质,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案