精英家教网 > 初中数学 > 题目详情

如图,△ABC中,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N,且BA•BM=BC•BN.
(1)求证:AC⊥BC;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=4时,求AB的值.

(1)证明:连接MN,
∵BN是圆的直径,
∴∠BMN=90°,
∵BA•BM=BC•BN,
∴BA:BN=BC:BM,
∴△ACB∽△NMB,
∴∠ACB=∠BMN=90°,
∴AC⊥BC;

(2)解:连接OM,则∠OMC=90°,
∵N为OC中点,
∴MN=ON=OM,
∴∠MON=60°,
∵OM=OB,
∴∠B=∠MON=30°,
∵∠ACB=90°,
∴AB=2AC=2×4=8.
分析:(1)连接MN,构造一个直角三角形.即可把证明的线段放到三角形中,根据相似三角形的判定和性质进行证明即可;
(2)连接OM,根据切线的性质得到直角△COM,再根据直角三角形斜边上的中线等于斜边的一半,得到MN等于圆的半径,从而发现等边三角形OMN,再根据圆周角定理得到∠B=30°,根据30°所对的直角边是斜边的一半即可求得AB的长.
点评:本题考查了切线的性质,解题的关键是连接直径构造直角三角形,连接过切点的半径都是圆中常见的辅助线.熟练运用直角三角形的性质能够发现等边三角形,进一步运用圆周角定理发现特殊的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC中,以AB为直径的⊙O交BC于点P,且P为BC中点,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)求证:AB=AC;
(3)若∠CAB=120°,BC=4,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县二模)如图,△ABC中,以AB为直径的⊙O交AC于D,交BC于E,已知CD=AD.
(1)求证:AB=CB;
(2)过点D作出⊙O的切线;(要求:用尺规作图,保留痕迹,不写作法)
(3)设过D点⊙O的切线交BC于H,DH=
32
,tanC=3,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,以B为圆心,BC长为半径的⊙B交边AB于D,AE⊥AB交CD的延长线于E,并且AE=AC.
(1)证明AC是⊙B的切线;
(2)探究DE•DC与2AD•DB是否相等,并说明理由;
(3)如果DE•DC=8,且BC=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•攀枝花)如图,△ABC中,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N,且BA•BM=BC•BN.
(1)求证:AC⊥BC;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=4时,求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,以BC为边向外作△BCD,把△ABD绕着点D按顺时针方向旋转60°得到△ECD的位置,A、C、E三点恰好在同一直线上.
(1)若AB=3,AC=2,试求出线段AE的长度;
(2)若∠ADC=20°,求∠BDA的度数.

查看答案和解析>>

同步练习册答案