精英家教网 > 初中数学 > 题目详情
已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.
分析:过D作DF垂直于BC,交BC于点F,由AD∥BC,∠ABC=90°,根据两直线平行同旁内角互补可得∠DAB=90°,再由DF与BC垂直得到∠DFB=90°,根据三个角为直角的四边形为矩形可得ABFD为矩形,可得出对边AD=FB,DF=AB,同时得到AD与BC分别为圆O的切线,又CD为圆O的切线,根据切线长定理得到AD=DE,CE=CB,由AD与BC的长,根据CD=DE+EC,等量代换可得出DC的长,再由BC-FB可得出CF的长,在直角三角形CDF中,由DC及CF的长,利用勾股定理求出DF的长,可得出AB的长,进而确定出圆O的半径,利用圆的面积公式即可求出圆O的面积.
解答:
解:过D作DF⊥BC,交BC于点F,
∵AD∥BC,∠ABC=90°,
∴∠DAB=∠ABC=90°,又AB为圆O的直径,
∴AD与圆O相切,BC与圆O相切,又DC与圆O相切,
∴AD=ED,CB=CE,
∵AD=3cm,BC=5cm,
∴CD=DE+EC=AD+BC=3+5=8cm,
又∠DAB=∠BFD=∠ABC=90°,
∴四边形ABFD为矩形,
∴FB=AD=3cm,AB=DF,
∴CF=BC-FB=5-3=2cm,
在Rt△CDF中,DC=8cm,CF=2cm,
根据勾股定理得:DF=
DC2-CF2
=2
15

∴圆O的直径AB=DF=2
15
,即半径r=
15

则圆O的面积S=πr2=15πcm2
点评:此题考查了切线的性质,平行线的性质,矩形的性质与判定,切线长定理,以及勾股定理,熟练掌握定理及性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,直角梯形ABCD中,∠BCD=90°,∠CDA=60°,AB=AD,AB=4,DF=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD=12,tanC=
43
,AM∥DC,E精英家教网、F分别是线段AD、AM上的动点(点E与A、D不重合)且∠FEM=∠AMB,设DE=x,MF=y.
(1)求证:AM=DM;
(2)求y与x的函数关系式并写出定义域;
(3)若点E在边AD上移动时,△EFM为等腰三角形,求x的值;
(4)若以BM为半径的⊙M和以ED为半径的⊙E相切,求△EMD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.精英家教网
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC中点,已知D点的横坐标为4,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,至点D停止,设移动的时间为t秒

(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的
14

(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

同步练习册答案