精英家教网 > 初中数学 > 题目详情
9.如图,四边形ABCD是矩形,AD=2AB,AB=6,E为AD中点,M为CD上的任意一点,PE⊥EM交BC于点P,EN平分∠PEM交BC于点N.
(1)若△PEN为等腰三角形,请直接写出∠DEM所有可能的值;
(2)当DM=1时,求PN的值;
(3)过点P作PG⊥EN于点G,K为EM中点,连接DK、KG.当时,求DK+KG+GP的最小值和最大值.

分析 (1)根据△PEN为等腰三角形,分PE=PN,PE=EN,PN=EN三种情况求出∠DEM所有可能的值即可;
(2)如图1,过E作EF⊥BC于F,连接MN,利用同角的余角相等得到一对角相等,再由一对直角相等,且夹边相等,利用ASA得到三角形PEF与三角形MED全等,利用全等三角形对应边相等得到PE=DM=1,EP=EM,再利用SAS得到三角形EPN与三角形EMN全等,利用全等三角形对应边相等得到MN=PN,即可求出PN的长;
(3)如图2,易知DK=$\frac{1}{2}$EM,PG=$\frac{EP}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$EM,连接GM,利用SAS得到三角形EPG与三角形PEG全等,利用全等三角形对应角相等,表示出GK,分别代入原式变形后,根据EM的范围求出最大值与最小值即可.

解答 解:(1)若△PEN为等腰三角形,∠DEM所有可能的值为0°,22.5°,45°;
(2)如图1,过E作EF⊥BC于F,连接MN,
∵EF⊥AD,PE⊥EM,
∴∠PEF+∠FEM=90°,∠FEM+∠DEM=90°,
∴∠PEF=∠MED,
∵AD=2AB,E为AD中点,且EF=AB,
∴EF=ED,
在△PEF和△MED中,
$\left\{\begin{array}{l}{∠PEF=∠MED}\\{EF=ED}\\{∠EFP=∠D=90°}\end{array}\right.$,
∴△EPF≌△EMD(ASA),
∴PF=DM=1,EP=EM,
在△EPN和△EMN中,
$\left\{\begin{array}{l}{EP=EM}\\{∠PEN=∠MEN}\\{EN=EN}\end{array}\right.$,
∴△EPN≌△EMN(SAS),
∴MN=PN,
在△CMN中,由勾股定理有CN2+CM2=MN2,即(7-PN)2+52=PN2
解得:PN=$\frac{37}{7}$;
(3)如图2,易知DK=$\frac{1}{2}$EM,PG=$\frac{EP}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$EM,
连接GM,
在△EMG和△EPG中,
$\left\{\begin{array}{l}{EP=EM}\\{∠PEG=∠MEG}\\{EG=EG}\end{array}\right.$,
∴△EMG≌△EPG(SAS),
∴∠EGM=∠EGP=90°,
∴GK=$\frac{1}{2}$EM,
∴DK+KG+GP=$\frac{1}{2}$EM+$\frac{1}{2}$EM+$\frac{\sqrt{2}}{2}$EM=(1+$\frac{\sqrt{2}}{2}$)EM(6≤EM≤6$\sqrt{2}$),
则DK+KG+GP的最大值为6+6$\sqrt{2}$,最小值为6+3$\sqrt{2}$.

点评 此题属于四边形综合题,涉及的知识有:矩形的性质,勾股定理,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.
(1)写出图中所有与$\overrightarrow{AD}$互为相反向量的向量:$\overrightarrow{DA}$,$\overrightarrow{CE}$,$\overrightarrow{EB}$;
(2)求作:$\overrightarrow{AD}-\overrightarrow{AE}$、$\overrightarrow{AB}+\overrightarrow{DC}$.(保留作图痕迹,写出结果,不要求写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读下列材料:
2016年6月24日,以“共赴百合之约•梦圆世园延庆”为主题的第二届北京百合文化节在延庆区世界葡萄博览园拉开帷幕,本届百合文化节突出了2019年世界园艺博览会元素,打造“一轴、四片区、五主景”的百合主题公园,为市民呈现百合的饕餮盛宴.
据介绍,四片区的花海景观是由“丽花秀”、“画卷”、“妫河谣”和“水云天”组成.设置在科普馆的“丽花秀”,借鉴西班牙的镶嵌艺术,利用小丽花打造大型立体景观.这里种植的小丽花的株数比2015年增加了10%;设置在葡萄盆栽区的“画卷”,由9个模块组成一幅壮观的“画卷”,这里种植了40万株的葡萄,有1014个世界名优新品.设置在主题餐厅东侧的“妫河谣”,利用流淌的线条,营造令人震撼的百合花溪;这里的百合有240个品种,种植达到220万株,比2015年多了70万株.设置在科普馆东侧的“水云天”,设计体现了“水天交融”的流畅曲线美,种植的50万株向日葵花与100亩紫色的薰衣草交相辉映,仿佛美丽的画廊.
据主办方介绍,2015年第一届百合文化节,种植的百合有230多个品种,种植小丽花18万株;葡萄品种总数达600多种,种植了30万株; 向日葵花也达到了25万株.
根据以上材料解答下列问题:
(1)2016年第二届北京百合文化节,种植的小丽花的株数为19.8万株;
(2)选择统计表或统计图,将2015、2016年百合文化节期间在世葡园种植的百合、小丽花、葡萄的株数表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD是矩形,将矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.求证:OA=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知⊙O中,AB是直径,PA和PC分别与⊙O相切于A,C两点,连结OP,CB
(1)求证:OP∥CB;
(2)延长PC交AB的延长线于点D,若PC=12,sin∠POA=$\frac{2\sqrt{5}}{5}$,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数y=3ax2+2bx+c
(1)若c=-2,该二次函数图象与x轴交点的坐标为(2,0),(-1,0),求此二次函数的最值;
(2)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,请你先判断a,c的大小关系;再判断当0<x<1时抛物线与x轴是否有公共点,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).
(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.
(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为(2a,2b)或(-2a,-2b).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.八月份某学校计划在总费用2300元的限额内,租用汽车送234名运动员和6名教练到外地参加第二届全州青少年运动会,每辆汽车上至少要有1名教练,现在甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量/(人/辆)4530
租金/(元/辆)400280
(1)共需租多少辆汽车?
(2)有几种租车方案;
(3)最节省费用的是哪种租车方案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在数轴上表示不等式x<1的解集,正确的是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案