解:(1)如图1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=75°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC-∠NOC=45°.
(2)如图2,∠MON=
α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=
α+30°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC-∠NOC=(
α+30°)-30°=
α.
(3)如图3,∠MON=
α,与β的大小无关.
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=
∠AOC=
(α+β),
∠NOC=
∠BOC=
β,
∴∠AON=∠AOC-∠NOC=α+β-
β=α+
β.
∴∠MON=∠MOC-∠NOC
=
(α+β)-
β=
α
即∠MON=
α.
分析:(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;
(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;
(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可.
点评:本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC-∠NOC.