科目:初中数学 来源:三点一测丛书九年级数学上 题型:044
两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如,我们来计算(7x+2+6x2)÷(2x+1),仿照672÷21,计算如下:
![]()
所以(7x+2+6x2)÷(2x+1)=3x+2.
由上面的计算可知计算步骤大体是:先用除式的第一项2x去除被除式的第一项6x2,得商式的第一项3x,然后用3x去乘除式,把积6x2+3x写在被除式下面(同类项对齐),从被除武中减去这个积,得4x+2,再把4x+2当作新的被除式,按照上面的方法继续计算,直到得出余式为止.上式的计算结果,余式等于0.如果一个多项式除以另一个多项式的余式为0,我们就说这个多项式能被另一个多项式整除,这时也可以说除式能整除被除式.
整式除法也有不能整除的情况.按照某个字母降幂排列的整式除法,当余式不是0而次数低于除式的次数时,除法计算就不能继续进行了,这说明除式不能整除被除式.例如,计算(9x2+2x3+5)÷(4x-3+x2).
解:
![]()
所以商式为2x+1,余式为2x+8.
与数的带余除法类似,上面的计算结果有下面的关系:9x2+2x3+5=(4x-3+x2)(2x+1)+(2x+8).这里应当注意,按照x的降幂排列,如果被除式有缺项,一定要留出空位.当然,也可用补0的办法补足缺项.
请你用上面的方法计算下面这道题:(6x3+x2-1)÷(2x-1).
查看答案和解析>>
科目:初中数学 来源:中学教材全解 七年级数学下 (北京师大版) 北京师大版 题型:044
小明的爸爸在午饭过后,突然心血来潮,欲前往投注站买六合彩.小明却从裤袋里拿出一枚硬币,一脸认真地对爸爸说:“你真的甘愿把钱投注在一个中奖机会近似为零的游戏中吗?不如你试用这个硬币去测试一下今天的运气吧.
如果连续24次掷得硬币的同一面(正面或背面皆可)朝上,你再去投注也未迟呢!”
拿过小明的硬币投掷数次后,爸爸说:“不可能都同一面朝上,这与买彩票有什么关系?我还是去买彩票.”小明说:“这里面有科学道理,可以让我给你算一算中奖的机会有多大,之后,你再去买也不迟.”
小明利用了概率计算的乘法定律:若P1和P2分别为事件E1和E2出现的概率,则E1和E2同时出现的概率或E2跟随E1出现的概率为P1×P2.这一种运算方式可推广到n个事件出现的情况.
小明拿出纸与计算器,把六合彩中一等奖、二等奖、三等奖的概率逐一进行下面的运算:
中一等奖者,需从47个号码中选中6个与开采出来相同的号码;二等奖则须中5个号码和1个特别号码;若只中5个号码,便会得三等奖.基于这些中奖的条件,小明利用概率的乘法定律计算出以下的概率.
中一等奖的概率=
=0.000 000 09(精确至8位小数).
中二等奖的概率=
=0.000 000 6(精确至7位小数).
中三等奖的概率=
=0.000 02(精确至5位小数).
计算后,小明说中六合彩的机会可以说近似为0,爸爸说:“你为什么让我连续掷硬币呢?它与中六合彩有联系吗?”小明告诉爸爸连续24次掷硬币且同一面朝上的概率为
是一个近似于零的数与中六合彩的概率可以相比.看了小明的计算,爸爸打消了买六合彩中奖的念头.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012年浙江省湖州市德清县士林中学中考数学模拟试卷(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012年四川省广元市虎跳中学中考数学模拟试卷(十二)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com