精英家教网 > 初中数学 > 题目详情
如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上.
(1)若∠BFE=65°,求∠AEB的度数;
(2)若AD=9cm,AB=3cm,求DE的长.
分析:(1)根据平行线的性质得出∠DEF=∠BFE=65°,再利用折叠得:∠BEF=∠DEF=65°,进而得出∠AEB的度数;
(2)首先设DE=xcm,则AE=(9-x)cm.由折叠得:BE=DE=xcm,再利用勾股定理得出x的值即可得出答案.
解答:解:(1)在矩形ABCD中,AD∥BC,
∴∠DEF=∠BFE=65°,
由折叠得:∠BEF=∠DEF=65°,
∴∠AEB=180°-∠BEF-∠DEF=50°;

(2)设DE=xcm,则AE=(9-x)cm.
由折叠得:BE=DE=xcm.
在Rt△ABE中:AB2+AE2=BE29+(9-x)2=x2
解得:x=5,
即:DE=5cm.
点评:此题主要考查了翻折变换的性质以及勾股定理等知识,熟练利用翻折变换的性质得出对应边和对应角相等是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,将一张矩形纸片ABCD折叠,使AB落在AD边上,然后打开,折痕为AE,顶点B的落点为F.你认为四边形ABEF是什么特殊四边形?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图:将一张矩形纸片ABCD的角C沿着GF折叠(F在BC边上,不与B、C重合)使得C点落在矩形ABCD内部的E处,FH平分∠BFE,则∠GFH的度数α满足(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和D重合,折痕为EF.
(1)连接EB,求证:四边形EBFD是菱形;
(2)若AB=3,BC=9,求重叠部分三角形DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张矩形纸片A′B′C′D′沿EF折叠,使点B′落在A′D′边上的点B处;沿BG折叠,使点D′落在点D处,且BD过F点.
(1)试判断四边形BEFG的形状,并证明你的结论;
(2)当∠BFE为多少度时,四边形BEFG是菱形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张矩形纸片对折再对折,然后沿着图中的虚线剪下一个角(虚线与折痕成45°角),打开,则所得的平面图形是
正方形
正方形

查看答案和解析>>

同步练习册答案