精英家教网 > 初中数学 > 题目详情

因为3-π________0(填”=”“<或>”),所以|3-π|=________

<    π-3
分析:比较3-π与0的大小关系,首先要比较3与π的大小关系即可,根据正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0即可对|3-π|进行化简.
解答:∵3<π
∴3-π<0
∴|3-π|=π-3
故答案是:<和π-3.
点评:本题主要考查了绝对值的性质,是需要熟记的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知如图直线l1∥l2,直线l3分别和l1、l2相交于A、B.求证∠1=∠3.(请在下列横线上填上合适的理由).例:证明:因为l1∥l2
已知
,所以∠1=∠2
两直线平行,同位角相等
,又∠2=∠3
对顶角相等
,所以∠1=∠3
等量代换

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC
内错角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你填上根据.
小华是这样想的:因为CF和BE相交于点O,
根据
对顶角相等
得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据
两边对应相等且夹角相等的两三角形全等
得出△COB≌△FOE,
根据
全等三角形对应边相等
得出BC=EF,
根据
全等三角形对应角相等
得出∠BCO=∠F,
既然∠BCO=∠F根据
内错角相等,两直线平行
、得出AB∥DF,
既然AB∥DF,根据
两直线平行,同旁内角互补
.得出∠ACE和∠DEC互补.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、因为3-π
0(填”=”“<或>”),所以|3-π|=
π-3

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们学过有理数减法可以转化为有理数加法来运算,有理数除法可以转化为有理数乘法来运算.其实这种转化的数学方法,在学习数学时会经常用到,通过转化我们可以把一个复杂问题转化为一个简单问题来解决.
例如:计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5

此题我们按照常规的运算方法计算比较复杂,但如果采用下面的方法把乘法转化为减法后计算就变得非常简单.
分析方法:因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

所以,将以上4个等式两边分别相加即可得到结果,解法如下:
解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

(1)应用上面的方法计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
(只填答案).
(3)类比应用上面的方法探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012

查看答案和解析>>

同步练习册答案