精英家教网 > 初中数学 > 题目详情
(2007•济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;
(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?

【答案】分析:(1)根据函数的交点的性质可知,一次函数y=-x+6的图象与反比例函数y=联立方程组可知,有解,所以这样的交点存在,即满足要求的矩形B存在.
(2)如果用x,Y分别表示矩形的长和宽,那么矩形C满足x+y=,xy=1,而满足要求的(x,y)可以看作一次函数y=-x+的图象与反比例函数y=的图象在第一象限内交点的坐标.画图或联立方程组可知,这样的交点不存在,即满足要求的矩形C是不存在的.
解答:解:(1)点(x,y)可以看作一次函数y=-x+6的图象在第一象限内点的坐标,
点(x,y)又可以看作反比例函数y=的图象在第一象限内点的坐标,
而满足问题要求的点(x,y)就可以看作一次函数y=-x+6的图象与反比例函数y=的图象在第一象限内交点的坐标.
分别画出两图象(如右图),从图中可看出,这样的交点存在,即满足要求的矩形B存在.

(2)不同意小明的观点.
如果用x,y分别表示矩形的长和宽,
那么矩形C满足x+y=,xy=1,
而满足要求的(x,y)可以看作一次函数y=-x+的图象与反比例函数y=的图象在第一象限内交点的坐标.
画图(如右图)可看出,这样的交点不存在,即满足要求的矩形C是不存在的.
所以不同意小明的观点.
点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象交点的意义,以及图象的特点,试题中贯穿了方程思想和数形结合的思想,请注意体会.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动.
(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t.
①当0<t≤4时,试求出m的取值范围;
②当t>4时,你认为m的取值范围如何?(只要求写出结论)

查看答案和解析>>

科目:初中数学 来源:2009年山东省日照市中考数学模拟试卷1(丁文斌)(解析版) 题型:解答题

(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动.
(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t.
①当0<t≤4时,试求出m的取值范围;
②当t>4时,你认为m的取值范围如何?(只要求写出结论)

查看答案和解析>>

科目:初中数学 来源:2007年山东省济宁市中考数学试卷(解析版) 题型:解答题

(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动.
(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;
(2)求直线BC的解析式;
(3)设PA-PO=m,P点的移动时间为t.
①当0<t≤4时,试求出m的取值范围;
②当t>4时,你认为m的取值范围如何?(只要求写出结论)

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《概率》(04)(解析版) 题型:填空题

(2007•济宁)如图所示,将转盘等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6,指针的位置固定.自由转动转盘,当它停止时,指针指向偶数区域的概率是(指针指向两个扇形的交线时,当作指向右边的扇形)   

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《锐角三角函数》(03)(解析版) 题型:填空题

(2007•济宁)计算:-tan45°的值是   

查看答案和解析>>

同步练习册答案