精英家教网 > 初中数学 > 题目详情
y1=x2-4x+3,y2=-x+3,则使y1≤y2成立的x的取值范围是
0≤x≤3
0≤x≤3
分析:先把二次函数配成顶点式,然后在同一直角坐标系中画出y1=x2-4x+3,y2=-x+3的图象,利用解方程求出它们交点的横坐标,再观察函数图象可确定使y1≤y2的x的取值范围.
解答:解:y1=x2-4x+3=(x-2)2-1,
在同一直角坐标系中画出y1=x2-4x+3,y2=-x+3的图象,如图
解方程x2-4x+3=-x+3得x=0或3,
所以交点坐标横坐标分别为0,3.
当y1<y2,即抛物线在一次函数图象下方所对应的自变量的取值范围为0<x<3,
当y1=y2时x=0或3,
∴y1≤y2成立的x的取值范围是0≤x≤3.
故答案为:0≤x≤3.
点评:本题考查了利用二次函数和一次函数图象解不等式的方法:先画出反映不等式的两函数图象,再利用方程组求出两函数图象的交点的坐标,然后观察图象得到满足不等式的自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤-
32
时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函精英家教网数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源:2012年天津市塘沽区中考数学二模试卷(解析版) 题型:解答题

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年天津市宝坻区中考数学一模试卷(解析版) 题型:解答题

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案