精英家教网 > 初中数学 > 题目详情

如图1,梯形ABCD中,AD∥BC,AB=8,∠ABC=90°,以AB为直径的⊙O切CD于点E.
(1)若设AD=x,BC=y,试求出y与x之间的函数关系式;
(2)如图2,BE的延长线交AD的延长线于点F.求证:AD=数学公式AF;
(3)如图3,若AD=2,BC=8.动点P以每秒1个单位长的速度,从点B沿线段BC向点C运动;同时点Q以相同的速度,从点D沿折线D-A-B向点B运动.当点P到达点C时,两点同时停止运动.过点P作直线PM⊥BC与折线B-D-C的交点为M.点P运动的时间为t(秒).点P在线段BC上运动时,是否可以使得以D、M、Q为顶点的三角形为直角三角形,若可以,请求出t的值;若不可以,请说明理由.

(1)解:过D作DF⊥BC于F,
∵AD∥BC,∠ABC=90°,
∴AD和BC为⊙O的切线,
而CD为⊙O的切线,
∴DE=DA=x,CE=CB=y,
而DF=AB=8,FC=y-x,
∴(x+y)2=82+(x-y)2
∴y=

(2)证明:连AE,
∵AB为直径,
∴∠AEB=90°,
而DA=DE,
∴∠DAE=∠DEA,
而∠DAE+∠F=∠DEA+∠DEF=90°,
∴∠F=∠DEF,
∴DE=DF,
∴AD=AF;

(3)解:当0<t≤2,
∵DQ=t,BP=t,
∴当AQ=BP时,∠MQD=90°,
∴t+t=2,
∴t=1;
当2<t≤8,
若∠QDM=90°,如图,
∴∠AQD=∠C,
∴Rt△AQD∽Rt△PCM,
∴AD:PM=AQ:PC,即AD:AQ=PM:PC,
而PM:PC=DF:FC=8:6=4:3,
∵AQ=t-2,
∴2:(t-2)=4:3,
∴t=
若∠QMD=90°,如图,
过M作MH⊥AB,
∴∠HQM=∠C,
∴Rt△HQM∽Rt△PCM,
∴MH:MP=HQ:PC,即HM:HQ=MP:PC,
∴HM:HQ=MP:PC=DF:FC=4:3,
PC=8-t,PM=(8-t),
而MH=t,QH=BH-BQ=(8-t)-(10-t)=-t,
∴t:(-t)=4:3,
∴t=<2,舍去.
当∠DQM=90°,如图,
过M作MH⊥AB于H点,则PM=(8-t),MN=t,AQ=t-2,
∴QH=8-(t-2)-(8-t)=t-
∴Rt△AQD∽Rt△HMQ,
∴AD:QH=AQ:HM,即2:(t-)=(t-2):t,
∴t2-10t+4=0,t=5±
∴t=5+>8(舍).
分析:(1)过D作DF⊥BC于F,根据切线长定理得到DE=DA=x,CE=CB=y,在Rt△DFC中,利用勾股定理即可得到x,y的关系;
(2)连AE,根据直径所对的圆周角为直角得到∠AEB=90°,而DA=DE,得到∠DAE=∠DEA,根据等角的余角相等得到∠F=∠DEF,则DE=EF,即可得到结论;
(3)分类讨论:当0<t≤2,当AQ=BP时,∠MQD=90°;当2<t≤8,分若∠QDM=90°,或∠QMD=90°,或∠DQM=90°进行讨论,构建三角形相似列出t的方程求解.
点评:本题考查了三角形相似的判定与性质;也考查了直角梯形的性质和切线的性质以及分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=DC=AD,AC=BC,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,BC=30cm,动点M从A点开始沿AD边向D以1cm/s的速度运动,动点N从C点开始沿CB边向B以3cm/s的速度运动,M、N分别从A、C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t s,t为何值时,四边形ABNM是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=DC,∠ACB=40°,∠ACD=30°,则∠B=
70
70
°,∠D=
110
110
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=BC,AC⊥BD,AB+CD=20,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD=2,BC=6,高DF=2,则腰长DC=
2
2
2
2

查看答案和解析>>

同步练习册答案