精英家教网 > 初中数学 > 题目详情
(2005•盐城)已知:在矩形ABCD中,AB=2,E为BC边上的一点,沿直线DE将矩形折叠,使C点落在AB边上的C点处.过C′作C′H⊥DC,C′H分别交DE、DC于点G、H,连接CG、CC′,CC′交GE于点F.
(1)求证:四边形CGC′E为菱形;
(2)设sin∠CDE=x,并设y=,试将y表示成x的函数;
(3)当(2)中所求得的函数的图象达到最高点时,求BC的长.
【答案】分析:(1)易得CC'被DE垂直平分,可得所求的四边形有2组邻边相等,以及一对对应角相等,利用图中的两个垂直得到C'H∥BC,可得到一对内错角相等,利用等边对等角,得到C′G=C′E,那么可得4条边相等,那么是菱形.
(2)给出了y的基本形式,那么可设分母中的单独的一个字母为未知量,其他线段用这条线段以及相应的x表示.
(3)函数图象达到最高点,那么应是当x=-时y相应的值.充分利用(2)在中的DG:DE的值,求得DE值,利用勾股定理可求得C'H的长,那么BC=C'H.
解答:(1)证明:根据题意,C、C′两点关于直线DE成轴对称,DE是线段CC′的垂直平分线,
故EC=EC′,GC=GC′,∠C′EG=∠CEG(2分)
由C′H⊥DC,BC⊥DC得:C′G∥CE,
∴∠C′GE=∠GEC,
∵∠C′EG=∠CEG,
∴∠C′GE=∠C′EG,
∴C′G=C′E,
∴C′G=C′E=EC=GC,
∴四边形CGCE为菱形.(4分)

(2)解:设DE=a,由sin∠CDE==x,
则CE=ax,又DC⊥CE,CF⊥DE,
∴△DCE∽△CFE,

(6分)
DG=DE-2EF=a-2ax2
.(7分)
∴y=-2x2+x+1.(8分)

(3)解:由(2)得:y=-2x2+x+1=,(9分)
可见,当x=时,此函数的图象达到最高点,此时
∵GH∥CE,

由DC=2,得DH=.(10分)
在Rt△DHC′中.(11分)
∴BC=.(12分)
点评:本题综合考查了菱形的判定,三角形的相似,勾股定理等知识.使用的判定为:四条边相等的四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•盐城)已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•盐城)已知:如图所示,直线l的解析式为y=x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源:2005年江苏省盐城市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•盐城)已知:如图所示,直线l的解析式为y=x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?

查看答案和解析>>

科目:初中数学 来源:2005年江苏省盐城市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•盐城)已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省盐城市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•盐城)已知:如图,现有的a×a,b×b正方形和a×b的矩形纸片若干块,试选用这些纸片(每种至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,作出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a2+5ab+2b2,并标出此矩形的长和宽.

查看答案和解析>>

同步练习册答案