精英家教网 > 初中数学 > 题目详情

操作与探究
(1)如图1,已知点A,B的坐标分别为(0,0),(4,0),将△ABC绕点A按逆时针方向旋转90°得到△AB′C′.
①画出△AB′C′;
②点C′的坐标______.
(2)如图2,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.
实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)C(-2,5)关于直线l的对称点B′、C′的位置,并写出它们的坐标:B′______、C′______;
归纳与发现:结合图形观察以上三组点的坐标,
你会发现:坐标平面内任一点P(m,-n)关于第一、三象限的角平分线l的对称点P'的坐标为______.
作业宝

解:(1)①如图所示:△AB′C′即为所求;

②点C′的坐标为:(-2,5);
故答案为:(-2,5);

(2)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)C(-2,5)关于直线l的对称点B′、C′的位置,它们的坐标分别为:
B′(3,5)、C′(5,-2);
发现:坐标平面内任一点P(m,-n)关于第一、三象限的角平分线l的对称点P'的坐标为:
(-n,m).
故答案为:(3,5)、(5,-2);(-n,m).
分析:(1)①根据△ABC绕点A按逆时针方向旋转90°得到△AB′C′,进而得出对应点B′,C′位置,即可得出图象;
②根据①中所求即可得出答案;
(2)利用平面直角坐标系得出对应点坐标,进而得出关于第一、三象限的角平分线l的对称点坐标特点为;横纵坐标交换位置.
点评:此题主要考查了图形的旋转变换以及关于直线对称点坐标性质,根据已知得出发现点的坐标变换是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

操作与探究
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=
 
(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=
 
(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=
 
(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的
 
倍.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

28、操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

操作与探究
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究
探索:在如图1至图3中,△ABC的面积为a.
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA、若△ACD的面积为S1,则S1=______(用含a的代数式表示);
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE、若△DEC的面积为S2,则S2=______(用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3)、若阴影部分的面积为S3,则S3=______(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次、可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的______倍.
精英家教网

查看答案和解析>>

同步练习册答案