精英家教网 > 初中数学 > 题目详情
如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:
①AD=BE=5cm;
②当0<t≤5时,y=
2
5
t2
③直线NH的解析式为y=-
2
5
t+27;
④若△ABE与△QBP相似,则t=
29
4
秒,
其中正确结论的个数为(  )
A.4B.3C.2D.1

①根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/s,
∴BC=BE=5cm,
∴AD=BE=5(故①正确);

②如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵ADBC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5

∴PF=PBsin∠PBF=
4
5
t,
∴当0<t≤5时,y=
1
2
BQ•PF=
1
2
t•
4
5
t=
2
5
t2(故②正确);

③根据5-7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,
故点H的坐标为(11,0),
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:
11k+b=0
7k+b=10

解得:
k=-
5
2
b=
55
2

故直线NH的解析式为:y=-
5
2
t+
55
2
,(故③错误);

④当△ABE与△QBP相似时,点P在DC上,如图2所示:
∵tan∠PBQ=tan∠ABE=
3
4

PQ
BQ
=
3
4
,即
11-t
5
=
3
4

解得:t=
29
4
.(故④正确);
综上可得①②④正确,共3个.
故选:B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

不能表示y是x函数的图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=4,BC=3,点P从起点B出发,沿BC、CD逆时针方向向终点D匀速运动.设点P所走过路程为x,则线段AP、AD与矩形的边所围成的图形面积为y,则下列图象中能大致反映y与x函数关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

甲、乙二人在一次赛跑中,路程s与时间t的关系如图所示,从图中可以看出,下列结论错误的是(  )
A.这是一次100米赛跑B.甲比乙先到达终点
C.乙跑完全程需12.5秒D.甲的速度是8米/秒

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,点B(1,1),半径为1、圆心角为90°的扇形外周有一动点P,沿A→B→C→A运动一圈,则点P的纵坐标y随点P走过的路程s之间的函数关系用图象表示大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,△AOB是边长为2的等边三角形,设直线x=t(0≤t≤2)截这个三角形可得位于此直线左方的图形的面积为y,则y关于t的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是(  )
A.(1)B.(3)C.(1)(3)D.(1)(2)(3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,设运动时间为T (秒),∠APB=y (度),
①沿O?A?D?O路线作匀速运动;
②沿O?D?C?O路线作匀速运动;
③沿O?C?B?O路线作匀速运动;
④沿O?B?A?O路线作匀速运动.
则下列路线作匀速运动的图象是右图中表示y与t之间的函数关系最恰当的序号是______.

查看答案和解析>>

同步练习册答案