精英家教网 > 初中数学 > 题目详情
“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数表达式(用含a,b的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明精英家教网∠MOB=
1
3
∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).
分析:(1)直线OM是正比例函数,可利用所给的坐标得到M的坐标,代入函数解析式即可;
(2)根据所给的点的坐标得到Q的坐标,看是否符合(1)中的函数解析式;运用矩形的性质,作图过程中的条件,外角与不相邻内角的关系,即可得证;
(3)既然能作出锐角的三等分角,先将此钝角的一半(锐角)三等分,再作钝角的三等分角.
解答:解:(1)设直线OM的函数关系式为y=kx,P(a,
1
a
)、R(b,
1
b
).(1分)
则M(b,
1
a
),
∴k=
1
a
÷b=
1
ab
.(2分)
∴直线OM的函数关系式为y=
1
ab
x.(3分)

(2)∵Q的坐标(a,
1
b
),满足y=
1
ab
x,
∴点Q在直线OM上.
∵四边形PQRM是矩形,
∴SP=SQ=SR=SM=
1
2
PR.
∴∠SQR=∠SRQ.(5分)
∵PR=2OP,
∴PS=OP=
1
2
PR.
∴∠POS=∠PSO.(6分)
∵∠PSQ是△SQR的一个外角,
∴∠PSQ=2∠SQR.
∴∠POS=2∠SQR.(7分)
∵QR∥OB,
∴∠MOB=∠SQR.(8分)
∴∠POS=2∠MOB.(9分)
∴∠MOB=
1
3
∠AOB.(10分)

(3)①先做出钝角的一半,按照上述方法先将此钝角的一半(锐角)三等分,进而做出再做一个角与已做得的角相等即可得到钝角的三等分角.
②先作钝角的邻补角的三等分角,然后再以得到的三等分角作等边三角形可得钝角的三等分角,在钝角内作做出这个角即可.
点评:过某个点,这个点的坐标应适合这个函数解析式.注意使用作图过程中利用的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠GFA,你能证明∠ECB=
13
∠ACB吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=
13
∠MAN.
(Ⅰ)当∠MAN=69°时,∠α的大小为
23
23
(度);
(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市育才中学中考数学二模试卷(解析版) 题型:解答题

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)

(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,)、R(b,),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.

查看答案和解析>>

同步练习册答案