精英家教网 > 初中数学 > 题目详情
如图四个图形中,不正确的是
[     ]
A.
B.
C.
D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宜兴市一模)如图1,正方形ABCD的边长为a(a为常数),对角线AC、BD相交于点O,将正方形KPMN(KN>
1
2
AC)的顶点K与点O重合,若绕点K旋转正方形KPMN,不难得出,两个正方形重合部分的面积始终是正方形ABCD面积的四分之一.

(1)①在旋转过程中,正方形ABCD的边被正方形KPMN覆盖部分总长度是定值吗?如果是,请求出这个定值,如果不是,请说明理由.
②如图2,若将上题中正方形ABCD改为正n边形,正方形KPMN改为半径足够长的扇形,并将扇形的圆心绕点O旋转,设正n边形的边长为a,面积为S,当扇形的圆心角为
360
n
360
n
°时,两个图形重合部分的面积是
s
n
,这时正n边形的边被扇形覆盖部分的总长度为
a
a

(2)如图3,在正方形KNMP旋转过程中,记KP与AD的交点为E,KN与CD的交点为F.连接EF,令AE=x,S△OEF=S,当正方形ABCD的边长为2时,试写出S关于x的函数关系式,并求出x为何值时S取最值,最值是多少.
(3)若将这两张正方形按如图4所示方式叠放,使K点与CD的中点E重合(AB≤
KM
2
),正方形ABCD以1cm/s的速度沿射线KM运动,当正方形ABCD完全进入正方形KPMN时即停止运动,正方形ABCD的边长为8cm,且CD⊥KM,求两正方形重叠部分面积y与运动时间t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

同步练习册答案