分析 (1)连接OD、AD,由三角形中位线定理可求得OD∥AB,可得OD⊥DE,可得DE为⊙O的切线;
(2)由条件可先求得CD、AD,再利用△BED∽△CDA,可求得DE.
解答 (1)证明:
连接OD、AD,![]()
∵AC为⊙O的直径,
∴∠ADC=90°,
∵AB=AC,
∴点D是BC的中点,
∵O是AC的中点,
∴OD是△ABC的中位线,
∴OD∥AB,
∴∠ODE=∠BED,
∵DE⊥AB,
∴∠ODE=90°,
∴DE是⊙O的切线;
(2)解:
∵AB=AC,且∠ADC=90°,
∴CD=$\frac{1}{2}$BC=8,∠B=∠C,
∴AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=6,
∵∠BED=∠CDA,
∴△BED∽△CDA,
∴$\frac{DE}{AD}$=$\frac{BD}{AC}$,即$\frac{DE}{6}$=$\frac{8}{10}$,
∴AC=4.8.
点评 本题主要考查切线的判定及相似三角形的判定和性质,掌握切线的判定方法是解题的关键,连接切点和圆心的半径是常用的辅助线.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com