精英家教网 > 初中数学 > 题目详情

如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.

证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5
∵A3B1=B1A4
∴S△A1A3B1=S△A1B1A4
又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,
∴S△A1A2A3=S△A1A4A5
同理S△A1A2A3=S△A3A4A5
∴S△A1A4A5=S△A3A4A5
∴△A3A4A5与△A1A4A5边A4A5上的高相等,
∴A1A3∥A4A5
同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4
分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.
点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在五边形ABCDE中,BC∥AD,BD∥AE,AB∥EC.图中与△ABC面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在五边形ABCDE中,∠ABC=∠AED=90°,M是CD的中点,BM=EM,求证:∠BAC=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=
2
,则五边形ABCDE的周长是(  )
A、16+
2
B、14+
2
C、12+
2
D、10+
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在五边形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,M是CD中点,试判断
BM,EM的大小关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在五边形ABCDE中,AE⊥DE,垂足为E,∠D=150°,∠A=∠B,∠B-∠C=60°,则∠A的度数为(  )

查看答案和解析>>

同步练习册答案