精英家教网 > 初中数学 > 题目详情

如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点(点C不与点A、点B重合),若∠P=30°,则∠ACB的度数是________°.

105
分析:连接OA,OB,由PA,PB为圆O的切线,利用切线的性质得到两个角为直角,再利用四边形的内角和定理求出∠AOB的度数,进而求出大角∠AOB的度数,利用圆周角定理即可求出∠ACB的度数.
解答:解:连接OA,OB,
∵PA,PB分别为圆O的切线,
∴∠OAP=∠OBP=90°,
∵∠P=30°,
∴∠AOB=150°,
即大角∠AOB=360°-150°=210°,
则∠ACB=大角∠AOB=105°.
故答案为:105
点评:此题考查了切线的性质,四边形的内角和定理,以及圆周角定理,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA,PB是⊙O的切线,切点分别为A,B,且∠APB=50°,点C是优弧
AB
上的一点,则∠ACB的度数为
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,PA、PB是⊙O的两条切线,A、B是切点,连接AB,直线PO交AB于M.请你根据圆的对称性,写出△PAB的三个正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•谷城县模拟)如图,PA、PB是⊙O 的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步练习册答案