
解:(1)证明:连接DO;
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;
(2)∵BC,BA分别是⊙O的切线和割线,
∴BC
2=BD•BA,
∴(2EC)
2=BD•BA,即BA•2

=36,
∴BA=3

,
在Rt△ABC中,由勾股定理得
AC=

=

=3

.
分析:(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点;
(2)解答此题需要运用圆切线和割线的性质和勾股定理求解.
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.