精英家教网 > 初中数学 > 题目详情

如图,以AB为直径的⊙O经过点C,D是AB延长线上一点,且DC=AC,∠CAB=30°.
(1)试判断CD所在的直线与⊙O的位置关系,并说明理由;
(2)若AB=2,求阴影部分的面积.

解:(1)CD是⊙O的切线.理由如下:
∵DC=AC,∠CAB=30°,
∴∠CAD=∠CDA=30°(等边对等角).
连接OC.
∴∠COB=60°,即∠COD=60°(在同圆中,同弧所对的圆周角是所对的圆心角的一半).
在△COD中,∠CDO=30°,∠COD=60°,
∴∠DCO=90°.
又∵点C在⊙O上,
∴CD是⊙O的切线,即直线CD与⊙O相切;

(2)连接BC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角).
∵∠CAB=30°,
∴∠COD=2∠CAB=60°,OC=AB=1,
∴在Rt△OCD中,CD=OC×tan60°=
∴S阴影=S△OCD-S扇形OCB=×1×-=-
分析:(1)连接OC,证明∠OCD=90°,从而判断CD与⊙O相切.易证∠COD=60°,所以∠OCD=90°,从而得证;
(2)利用“切割法”解答,即S阴影=S△OCD-S扇形OCB
点评:此题考查了切线的判定、解直角三角形等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以AB为直径的半圆O上有一点C,过A点作半圆的切线交BC的延长线于点D.
(1)求证:△ADC∽△BDA;
(2)过O点作AC的平行线OF分别交BC,
BC
于E、F两点,若BC=2
3
,EF=1,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若
BC
AC
=1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CE•CP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.若△ADC是边长为1的等边三角形,则PC的长=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以AB为直径的⊙O与AD、DC、BC均相切,若AB=BC=4,则OD的长度为(  )

查看答案和解析>>

同步练习册答案