精英家教网 > 初中数学 > 题目详情
(在下面两题中任选一题)
(1)如图,双曲线y=
k
x
经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是
12
12

(2)如图,点A在双曲线y=
1
x
上,点B在双曲线y=
3
x
上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为
2
2

分析:(1)过A点作AC⊥x轴于点C,易得△OAC∽△ONM,则OC:OM=AC:NM=OA:ON,而OA=2AN,即OA:ON=2:3,设A点坐标为(a,b),得到N点坐标为(
3
2
a,
3
2
b),由点A与点B都在y=
k
x
图象上,根据反比例函数的坐标特点得B点坐标为(
3
2
a,
2
3
b),由OA=2AN,△OAB的面积为5,△NAB的面积为
5
2
则△ONB的面积=5+
5
2
=
15
2
根据三角形面积公式得
1
2
NB•OM=
15
2
1
2
×(
3
2
b-
2
3
b)×
3
2
a=
15
2
,化简得ab=12,即可得到k的值.
(2)根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
解答:解:(1)过A点作AC⊥x轴于点C,如图:
则AC∥NM,
∴△OAC∽△ONM,
∴OC:OM=AC:NM=OA:ON,
而OA=2AN,即OA:ON=2:3,设A点坐标为(a,b),则OC=a,AC=b,
∴OM=
3
2
a,NM=
3
2
b,
∴N点坐标为(
3
2
a,
3
2
b),
∴点B的横坐标为
3
2
a,设B点的纵坐标为y,
∵点A与点B都在y=
k
x
图象上,
∴k=ab=
3
2
a•y,
∴y=
2
3
b,即B点坐标为(
3
2
a,
2
3
b),
∵OA=2AN,△OAB的面积为5,
∴△NAB的面积为
5
2

∴△ONB的面积=5+
5
2
=
15
2

1
2
NB•OM=
15
2

1
2
×(
3
2
b-
2
3
b)×
3
2
a=
15
2

∴ab=12,
∴k=12.
故答案为12.

(2)过A点作AE⊥y轴,垂足为E,
∵点A在双曲线y=
1
x
上,
∴四边形AEOD的面积为1,
∵点B在双曲线y=
3
x
上,且AB∥x轴,
∴四边形BEOC的面积为3,
∴四边形ABCD为矩形,则它的面积为3-1=2.
故答案为:2.
点评:本题主要考查了反比例函数 y=
k
x
中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(在下面两题中任选一题完成填空,若两题都做按第一小题计分)
(Ⅰ) 不等式2x<4x-6的解集为
x>3
x>3

(Ⅱ) 用计算器计算:3sin25°=
1.27
1.27
 (保留三个有效数字).
在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标是
(-3,-2)
(-3,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

(在下面两题中任选一题完成填空,若两题都做按第一小题计分)
(Ⅰ)不等式2x<4x-6的解集为
x>3
x>3

(Ⅱ)用计算器计算:3sin25°=
1.27
1.27
 (保留三个有效数字).

查看答案和解析>>

科目:初中数学 来源:2013年山西省中考数学模拟试卷(二)(解析版) 题型:填空题

(在下面两题中任选一题完成填空,若两题都做按第一小题计分)
(Ⅰ) 不等式2x<4x-6的解集为   
(Ⅱ) 用计算器计算:3sin25°=     (保留三个有效数字).
在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标是   

查看答案和解析>>

科目:初中数学 来源:2012年全新中考数学模拟试卷(二)(解析版) 题型:填空题

(在下面两题中任选一题完成填空,若两题都做按第一小题计分)
(Ⅰ) 不等式2x<4x-6的解集为   
(Ⅱ) 用计算器计算:3sin25°=     (保留三个有效数字).
在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标是   

查看答案和解析>>

同步练习册答案