精英家教网 > 初中数学 > 题目详情
18.如图,若∠1+∠2=180°,∠3=110°,则∠4=110°.

分析 根据∠1与∠2互补,可得a与b平行;再根据两直线平行同位角相等,即可求出∠4与∠3相等.

解答 解:如图,∵∠1+∠2=180°,
∴a∥b,
∴∠3=∠4,
又∵∠3=110°,
∴∠4=110°.
故答案为:110°.

点评 本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.计算:3${\;}^{\frac{1}{3}}$÷9${\;}^{\frac{1}{4}}$×27${\;}^{\frac{1}{4}}$(最后结果用幂的形式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.据统计,2017年河南省的夏粮收购总产量为796.24亿斤,请用科学记数法表示这个数为(  )
A.7.9624×1010B.7.9624×109C.79.624×109D.0.79624×1011

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=$\sqrt{p(p-a)(p-b)(p-c)}$,其中p=$\frac{a+b+c}{2}$;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=$\frac{1}{2}$$\sqrt{{a}^{2}{b}^{2}-(\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2})^{2}}$,若一个三角形的三边长分别为2,3,4,则其面积是(  )
A.$\frac{3\sqrt{15}}{8}$B.$\frac{3\sqrt{15}}{4}$C.$\frac{3\sqrt{15}}{2}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知实数x、y满足(x-3)2+$\sqrt{y-7}$=0,则以x、y的值为两边长的等腰三角形的周长是(  )
A.13或17B.13C.17D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x<ax+4的解集为(  )
A.x>3B.x<1C.x>1D.x<3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,△ABC中,∠ACB=90°,∠A=α,以点C为中心将△ABC顺时针旋转θ角,得到△A′B′C′,且B′点恰好落在AB上,则旋转角θ的大小为(  )
A.α+10°B.α+20°C.αD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.【阅读理解】
我们知道,1+2+3+…+n=$\frac{n(n+1)}{2}$,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为$\underset{\underbrace{n+n+…+n}}{n个n}$,即n2,这样,该三角形数阵中共有$\frac{n(n+1)}{2}$个圆圈,所有圆圈中数的和为12+22+32+…+n2

【规律探究】
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n),发现每个位置上三个圆圈中数的和均为2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=$\frac{n(n+1)(2n+1)}{2}$,因此,12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$.
【解决问题】
根据以上发现,计算:$\frac{{1}^{2}+{2}^{2}+{3}^{2}+…+201{7}^{2}}{1+2+3+…+2017}$的结果为1345.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列运算正确的是(  )
A.3a-1=$\frac{1}{3a}$B.a-2+2a-1=2a-3C.(-a)-3a2=-a-6D.(-a)-3÷(-a-4)=a

查看答案和解析>>

同步练习册答案