精英家教网 > 初中数学 > 题目详情

【题目】CPI指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情况.CPI的涨跌率在一定程度受到季节性因素和天气因素的影响.根据北京市2015年与2016年CPI涨跌率的统计图中的信息,请判断2015年1~8月份与2016年1~8月份,同月份比较CPI涨跌率下降最多的月份是月;请根据图中提供的信息,预估北京市2016年第四季度CPI涨跌率变化趋势是 , 你的预估理由是

【答案】:8;先减后增;2015年9~12月份CPI涨跌率先减后增,所以预估北京市2016年第四季度CPI涨跌率变化趋势是先减后增
【解析】解:由函数图象可知,2015年1~8月份与2016年1~8月份,同月份CPI涨跌率8月份相差2.6%﹣1%=1.6%, ∴同月份比较CPI涨跌率下降最多的月份是8月;
根据图中提供的信息,预估北京市2016年第四季度CPI涨跌率变化趋势是先减后增,
预估理由是2015年1~8月份与2016年1~8月份,同月份CPI涨跌率基本保持一致,而2015年9~12月份CPI涨跌率先减后增,
∴预估北京市2016年第四季度CPI涨跌率变化趋势是先减后增,
所以答案是:8,先减后增,2015年9~12月份CPI涨跌率先减后增,所以预估北京市2016年第四季度CPI涨跌率变化趋势是先减后增.
【考点精析】解答此题的关键在于理解函数的图象的相关知识,掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一组管道如图1所示,其中四边形ABCD是矩形,O是AC的中点,管道由AB,BC,CD,DA,OA,OB,OC,OD组成,在BC的中点M 处放置了一台定位仪器.一个机器人在管道内匀速行进,对管道进行检测.设机器人行进的时间为x,机器人与定位仪器之间的距离为y,表示y与x的函数关系的图象大致如图2所示,则机器人的行进路线可能为( )

A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).

(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.

观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.

(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为 , 点G的坐标为
(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m , n , q
(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】表是二次函数y=ax2+bx+c的部分x,y的对应值:

x

﹣1

0

1

2

3

y

m

﹣1

﹣2

﹣1

2


(1)二次函数图象的开口向 , 顶点坐标是 , m的值为
(2)当x>0时,y的取值范围是
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/秒的速度移动,点Q沿DA边从D以1cm/秒的速度移动,若P、Q同时出发,用t表示移动时间(0≤t≤6),求当t何值时,△APQ与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.

(1)求抛物线的解析式及点D的坐标;
(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ= MN时,求菱形对角线MN的长.

查看答案和解析>>

同步练习册答案