精英家教网 > 初中数学 > 题目详情

(2005·青岛)如图是一个长8m、宽6m、高5m的仓库,在其内壁的A(长的四等分点)处有一只壁虎、B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为________m.

答案:略
解析:

思路直现:根据题意,将仓库看成一个长方体,由于壁虎爬行路线是在长方体的内表面,将这个长方体中壁虎爬行的表面展开成平面图形如图,其中点B在展开的平面图中对应位置是,应用勾股定理分别计算的值.

中,

中,

中,

,取

解:


提示:

这是一道空间中最短路径问题,以常见的长方体房间为背景,设计了一个实际问题,新颖而有趣,问题是放在空间而不是经常讨论的平面中,思维方法是一个挑战.

将问题转化到同一个平面中是关键,以后会学习

的化简暂不要求


练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省新课标中考数学模拟试卷(3)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年山东省青岛市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

同步练习册答案