精英家教网 > 初中数学 > 题目详情

现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).

解:解法一:①如图:

②证明:∵大正方形的面积表示为(a+b)2,大正方形的面积也可表示为c2+4×ab,
∴(a+b)2=c2+4×ab,
a2+b2+2ab=c2+2ab
∴a2+b2=c2
即直角三角形两直角边的平方和等于斜边的平方.

解法二:①如图,

②证明:∵大正方形的面积表示为:c2
又可以表示为:ab×4+(b-a)2
∴c2=b×4+(b-a)2,c2=2ab+b2-2ab+a2
∴a2+b2=c2
即直角三角形两直角边的平方和等于斜边的平方;

解法三:①如图,

②证明:梯形的面积可以表示为:ab×2+c•c=ab+c2
也可以表示为:(a+b)(a+b)=(a2+2ab+b2),
(a2+2ab+b2)=ab+c2
整理得,a2+b2=c2

解法四:①如图,

②证明:边长为c的正方形的面积可以表示为c2
也可以表示为:a2+b2
∴a2+b2=c2
分析:通过作图,利用三角形面积、正方形面积之间的关系,证明勾股定理.
点评:本题考查了勾股定理的证明,利用同一个图形的面积的不同表示方法得解即可,灵活性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,其中a1•a2≠0.当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-1,0),B(1,0).我们记过三点的二次函数的图象为“C□□□”(“□□□”中填写相应三个点的字母).如过点A、B、M三点的二次函数的图象为CABM
精英家教网
(1)如果已知M(0,1),△ABM≌△ABN.请通过计算判断CABM与CABN是否为全等抛物线;
(2)①若已知M(0,n),在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.求抛物线CABM的解析式,然后请直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM?根据以上的探究结果,在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.然后请列出所有满足过平行四边形中三个顶点且能与CABM全等的抛物线C□□□”.

查看答案和解析>>

科目:初中数学 来源: 题型:

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置,A与C重合,O与C重合.
(1)求图1中,A,B,D三点的坐标;
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式;
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式;
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过精英家教网程中是否存在⊙P与x轴或y轴相切的情况?若存在,请求出P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,其中a1•a2≠0.当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-1,0),B(1,0).我们记过三点的二次函数的图象为“C□□□”(“□□□”中填写相应三个点的字母).如过点A、B、M三点的二次函数的图象为CABM

(1)如果已知M(0,1),△ABM≌△ABN.请通过计算判断CABM与CABN是否为全等抛物线;
(2)①若已知M(0,n),在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.求抛物线CABM的解析式,然后请直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM?根据以上的探究结果,在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.然后请列出所有满足过平行四边形中三个顶点且能与CABM全等的抛物线C□□□”.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置,A与C重合,O与C重合。
(1)求图1中,A,B,D三点的坐标;
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式;
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式;
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在,请求出P的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(44):2.8 二次函数的应用(解析版) 题型:解答题

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置,A与C重合,O与C重合.
(1)求图1中,A,B,D三点的坐标;
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式;
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式;
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况?若存在,请求出P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案