精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0),B(x2,0)(A在B的左侧),与y轴的正半轴交于点C.如果x1+x2=1,x1•x2=-6,且△ABC的面积为数学公式
(1)求此抛物线的解析式.
(2)如果P是线段AC上一个动点(不与A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

解:根据题意画出图形如下所示:

(1)A(-2,O),B(3,0),
S△ABC=
∴c=3,C(0,3).
∴抛物线的解析式是y=-x2+x+3.

(2)假设存在满足条件的点R,并设直线y=m与y轴的交点为E(0,m),
由(1),知AB=5,OC=3.
点P不与点A、C重合,
∴点E(0,m)不与点O、C重合.
∴0<m<3.
由于PQ为等腰直角三角形PQR的一腰,
过点P作PR1⊥x轴于点R1,则∠R1PQ=90°,PQ=PR1=m.
即(3-m)-=m,
解得m=
∴P(xP),Q(xQ),
点P在直线AC上,
解得xP=-,P(-).
∴点R1(-,0).
过点Q作QR2⊥x轴于R2
同理可求得xQ=,Q( ).
∴点R2,0).验证成立,
∴R1(-,0)、R2,0)是满足条件的点.
分析:(1)已知A,B的坐标,易求出三角形ABC的面积以及点C的坐标.易求解析式.
(2)假设存在点R,直线y=m与y轴的交点为点E,根据△PQR为等腰直角三角形列式求解即可.
点评:本题考查的是二次函数的综合运用,难度较大,要利用大量的辅助线的帮助,注意各部分知识的综合应用,并注意总结积累这些综合题的解题思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案