精英家教网 > 初中数学 > 题目详情
对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C11A,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2=
361
361
分析:根据等底的三角形高的比等于面积比推理出△A1B1C的面积是△A1BC面积的2倍,则△A1B1B的面积是△A1BC面积的3倍…,以此类推,得出△A2B2C2的面积.
解答:解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,
因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,
因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,
设△ABC的面积是a,则△A1BC的面积是2a,
同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,
则△A1B1B的面积是6a,
同理△B1C1C和△A1C1A的面积都是6a,
△A1B1C1的面积是19a,
即△A1B1C1的面积是△ABC的面积的19倍,
同理△A2B2C2的面积是△A1B1C1的面积的19倍,
∴S2=19×19×1=361.
故答案为:361.
点评:此题考查了三角形的面积,正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,对面积为s的△ABC逐次进行以下操作:
第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1
第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,B2C1=2B1C1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2
…;
按此规律继续下去,可得到△AnBnCn,则其面积Sn=
19nS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=
2476099
2476099

查看答案和解析>>

科目:初中数学 来源: 题型:

对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△AnBnCn
(1)求面积S1;(2)求面积Sn

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面资料:
小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.
小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=2AB,B1C=2BC,C1A=2CA,根据等高两三角形的面积比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此继续推理,从而解决了这个问题.

(1)直接写出S1=
19a
19a
(用含字母a的式子表示).
请参考小明同学思考问题的方法,解决下列问题:
(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.
(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.

查看答案和解析>>

同步练习册答案