精英家教网 > 初中数学 > 题目详情

如图所示制作一种产品,需先将材料加热达到60℃后,再进行操作。设该材料温度为y(℃),从加热开始计算的时间为x(min)。据了解,设该材料开始加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y 与时间x成反比例关系(如图)。已知该材料在操作加工前的温度为20℃,加热5分钟后温度达到60℃。

(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式。   

(2)根据工艺要求,是材料的温度低于15℃,需停止操作,那么从开始加热到停止操作,共经历了多少时间。

 

【答案】

(1) (),();(2)20分钟

【解析】

试题分析:(1)当时,设函数关系式为,由图象过点(0,20)(5,60)根据待定系数法求解即可;当时,设函数关系式为,由图象过点(5,60)根据待定系数法求解即可;

(2)把代入反比例函数关系式即可求得结果.

(1)当时,设函数关系式为

∵图象过点(0,20)(5,60)

,解得

此时y与x的函数关系式为

时,设函数关系式为

∵图象过点(5,60)

此时y与x的函数关系式为

(2)在中,当时,,解得

答:从开始加热到停止操作,共经历了20分钟.

考点:一次函数、反比例函数的应用

点评:函数的应用是初中数学的重点,是中考常见题,一般以压轴题的形式出现,难度较大.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达精英家教网到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

制作一种产品,需先将材料加热到100℃后,再进行操作.设该材料的温度为y(℃),从加热开始计算的时间为x(min).经实验,该材料加热时,温度y与时间x成一次精英家教网函数,停止加热进行操作时,温度y与时间x成反比例关系(如图所示).
(1)根据图象写出该材料加热前的温度和加热后达到的最高温度;
(2)根据图象求出停止加热进行操作时,温度y与时间x的函数关系式;
(3)根据工艺要求,当材料的温度低于40℃时,须停止操作,且加工一个成品需连续操作12 min.那么只经过一次加热,是否可以完成这种产品的一个成品加工?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年四川省盐边县红格中学八年级下学期期中考试数学试卷(带解析) 题型:解答题

如图所示制作一种产品,需先将材料加热达到60℃后,再进行操作。设该材料温度为y(℃),从加热开始计算的时间为x(min)。据了解,设该材料开始加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y 与时间x成反比例关系(如图)。已知该材料在操作加工前的温度为20℃,加热5分钟后温度达到60℃。

(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式。   
(2)根据工艺要求,是材料的温度低于15℃,需停止操作,那么从开始加热到停止操作,共经历了多少时间。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙教版九年级(上)第一次自我评价数学试卷(解析版) 题型:解答题

如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

查看答案和解析>>

同步练习册答案