精英家教网 > 初中数学 > 题目详情
如图,已知DB平分∠ADE,DE∥AB,∠CDE=82°,则∠EDB=
49
49
度,∠A=
82
82
度.
分析:由DE∥AB,根据平行线的性质得到∠A=∠CDE,∠A+∠ADE=180°,而∠CDE=82°,则∠A=82°,∠ADE=180°-82°=98°,然后根据角平分线的定义得∠EDB=
1
2
∠ADE,即可计算出∠EDB的度数.
解答:解:∵DE∥AB,
∴∠A=∠CDE,∠A+∠ADE=180°,
∵∠CDE=82°,
∴∠A=82°,
∴∠ADE=180°-82°=98°,
又∵DB平分∠ADE,
∴∠EDB=
1
2
∠ADE=
1
2
×98°=49°.
故答案为49,82.
点评:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.也考查了角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知DB平分∠ADE,DE∥AB,∠CDE=82°,则∠ABD=
49°
49°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,已知DB平分∠ADE,DE∥AB,∠CDE=82°,则∠ABD=________.

查看答案和解析>>

科目:初中数学 来源:河北省期中题 题型:填空题

如图,已知DB平分∠ADE,DE∥AB,∠CDE=82°,则∠ABD= _________

查看答案和解析>>

同步练习册答案