精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是菱形,点E,F分别在边BC,CD上,且△AEF是等边三角形,AB=AE,则∠B=


  1. A.
    65°
  2. B.
    70°
  3. C.
    75°
  4. D.
    80°
D
分析:因为等边三角形△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠B的度数.
解答:∵△AEF的边长与菱形ABCD的边长相等,
∴AB=AE,AF=AD,
设∠B=x,则∠BAD=180°-x,
∠BAE=∠DAF=180°-2x,
又∵∠BAE+∠EAF+∠FAD=∠BAD
即180°-2x+180°-2x+60°=180°-x
解得x=80°,
故选D.
点评:本题考查了正三角形各内角为60°、各边长相等的性质,考查了菱形邻角之和为180°的性质,本题中根据关于x的等量关系式求x的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案