精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是(  )
A、2
10
B、
10
C、4
D、6
分析:要求PD+PA和的最小值,PD,PA不能直接求,可考虑通过作辅助线转化PD,PA的值,从而找出其最小值求解.
解答:精英家教网解:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=
22+62
=2
10

∴PD+PA=PD+PC=CD=2
10

∴PD+PA和的最小值是2
10

故选A.
点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.记△ODE的面积为S.
(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;
(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;
(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吴中区一模)如图所示,四边形OABC是矩形,点A、C的坐标分别为(6,0),(0,2),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
12
x
+b交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明参加汽车驾驶培训,在实际操作考试时,被要求进行启动加速、匀速运行、制动减速三个连贯过程,在加速和减速运动过程中,路程和速度均满足关系s=v0t+
12
at2
,v0为加速或减速的起始速度,加速时a为正,减速时a为负,匀速时a=0,加速或减速t秒后的瞬时速度v=v0+at,小明在操作中瞬时速度v与时间t的关系如图所示,其中OA为匀加速,AB为匀速,BC为匀减速.
(1)若减速过程与加速过程完全相反,即BC与OA关于AB的中垂线成轴对称,求BC的解析式.
(2)当0≤t≤300时,求汽车行驶的路程s与时间t的函数关系式.
(3)汽车行驶t秒后,
①若经途中D点,过点D作垂线交AB于点E,试证明汽车行驶的路程恰等于四边形OAED的面积.
②若汽车行驶至M点,过点M做垂线交BC于点N,汽车行驶的路程是否等于五边形OABNM的面积呢?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD与A′B′C′D′以0为位似中心,位似比为1:2.则点A的对应点是点
A′
A′
.点B的对应点是点
B′
B′
.线段AB的对应线段是线段
A′B′
A′B′
,∠DAB的对应角是
∠D′A′B′
∠D′A′B′
,线段AD与A′D′的比为
1:2
1:2
.它们关于点
O
O
位似.△OAB与
△OA′B′
△OA′B′
相似,相似比为
1:2
1:2

查看答案和解析>>

同步练习册答案