精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.

(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).
(1)4  (2)①c=4  ②1<m<3
(1)根据点A的坐标是(-2,4),得出AB,BO的长度,即可得出△OAB的面积;
(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,直接得出即可;
②利用配方法求出二次函数解析式即可得出顶点坐标,根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.
解:(1)∵点A的坐标是(-2,4),AB⊥y轴,
∴AB=2,OB=4,
∴△OAB的面积为:×AB×OB=×2×4=4,
(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,
-(-2)2-2×(-2)+c=4,
∴c=4,
②∵y=-x2-2x+4=-(x+1)2+5,
∴抛物线顶点D的坐标是(-1,5),
过点D作DE⊥AB于点E交AO于点F,

AB的中点E的坐标是(-1,4),OA的中点F的坐标是(-1,2),
∴m的取值范围是:1<m<3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的图象过点C(0,1),顶点为Q(2,3)点D在x轴正半轴上,且线段OD=OC
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是(  )
A.y=-+3B.y=-3+3
C.y=-12+3D.y=-12+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:S)的函数关系式是,则飞机着陆后滑行       米才能停下来。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某经销商代理销售一种手机,按协议,每卖出一部手机需另交品牌代理费100元,已知该种手机每部进价800元,销售单价为1200元时,每月能卖出100部,市场调查发现,若每部手机每让利50元,则每月可多售出40部.
(1)若每月要获取36000元利润,求让利价
(利润=销售收入-进货成本-品牌代理费)
(2)设让利x元,月利润为y元,写出y与x的函数关系式,并求让利多少元时,月利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两位同学对问题“求代数式的最小值”提出各自的想法.甲说:“可以利用已经学过的完全平方公式,把它配方成,所以代数式的最小值为-2”.乙说:“我也用配方法,但我配成,最小值为2”.你认为(    )
A.甲对B.乙对C.甲、乙都对D.甲乙都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是(  ).
A.ac>0
B.方程ax2+bx+c=0的两根是x1=-1,x2=3
C.2a-b=0
D.当y>0时,y随x的增大而减小

查看答案和解析>>

同步练习册答案