精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,C为⊙O上一点,DF切⊙O于E点,分别与CA、CB的延长线于点D、F,已知AB∥DF,CD=4,CF=3,则AC=(  )
A、
9
5
B、
15
8
C、
48
25
D、
96
49
考点:切线的性质
专题:
分析:连接OE,作CN⊥DF,交AB于M,交DF于N,易证△ABC∽△DFC,利用相似三角形的性质:对应边的比值相等可求出BC:AC:AB=CF:CD:DF=3:4:5,设AB=5α,则AC=4α,OE=MN=2.5α,根据CM2=AM×BM=3.2×1.8α2,即可出CM的长,进而可求出AC的长.
解答: 解:

∵AB是⊙O的直径,
∴∠C=90°,
∵CD=4,CF=3,
∴DF=5,
∵AB∥DF,
∴△ABC∽△DFC,
∴BC:AC:AB=CF:CD:DF=3:4:5,
连接OE,
∵DF是切线,
∴OE⊥DF,
作CN⊥DF,交AB于M,交DF于N,
则MN=OE(平行线间的距离相等),
设AB=5α,则AC=4α,OE=MN=2.5α,
∵AC2=AM×AB,
∴16α2=5αAM,
∴AM=3.2α,BM=AB-AM=1.8α,
∵CM2=AM×BM=3.2×1.8α2
∴CM=2.4α2
则CN=CM+MN=4.9α,
∵AB∥DF,
∴AC:CD=CM:CN=
24
49

∴AC=
24
49
CD=
96
49

故选D.
点评:本题考查了圆的切线性质,相似三角形的判定和性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

因式分解:
(1)x3-3x2+4
(2)x3-11x2+31x-21.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点O(0,0),A(2,0),B(-4,0),C(a,a).若CO是∠ACB的平分线,则点C的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|x|=3x+1,则(64x2+48x+9)2005=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC三边的中点分别是D、E、F,某同学随机地把一滴颜料滴在△ABC内,则这滴颜料落在△BEF内的概率是(  )
A、
1
3
B、
1
4
C、
1
6
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数的图象y=2x2+1的图象(  )
A、顶点为(2,1)
B、对称轴为直线=1
C、最低点为(0,1)
D、开口向下

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC=45°,高线AD和BE交于点F.求证:CD=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:D是AC上一点,BC=AE,DE∥AB,∠B=∠DAE.求证:AB=DA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,每个大正方形是由边长为1的小正方形组成.观察如图图形,完成下列填空:

(1)猜想:当n为奇数时,图n中黑色小正方形的个数为
 
,当n为偶数时,图n中黑色小正方形的个数为
 

(2)在边长为偶数的正方形中,白色小正方形的个数是黑色小正方形个数的4倍,求这个正方形的边长.

查看答案和解析>>

同步练习册答案