精英家教网 > 初中数学 > 题目详情

如图,OA平分∠BAC,∠1=∠2.试说明:OB=OC.

证明:∵OA平分∠BAC,
∴∠BAO=∠CAO,
∵已知∠1=∠2,AO为公共边,
∴△AOB≌△AOC(AAS),
∴OB=OC.
分析:由OA平分∠BAC可得∠BAO=∠CAO,已知∠1=∠2,AO为公共边,即可证明△AOB≌△AOC,即可得OB=OC.
点评:本题考查了三角形全等的判定及三角形全等的性质,属于基础题型,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB为半圆O的直径,D、E是半圆上的两点,且BD平分∠ABE,过点D作BE延长线的垂线,垂足为精英家教网C,直线CD交BA的延长线于点F.
(1)求证:直线CD是半圆O的切线;
(2)若FA=2,OA=3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM精英家教网∥BD,交BA的延长线于点M.
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山一模)如图,点C的坐标为(0,3),点A的坐标为(3
3
,0),点B在x轴上方且BA⊥x轴,tanB=
3
,过点C作CD⊥AB于D,点P是线段OA上一动点,PM∥AB交BC于点M,交CD于点Q,以PM为斜边向右作直角三角形PMN,∠MPN=30°,PN、MN的延长线交直线AB于E、F,设PO的长为x,EF的长为y.
(1)求线段PM的长(用x表示);
(2)求点N落在直线AB上时x的值;
(3)求PE是线段MF的垂直平分线时直线PE的解析式;
(4)求y与x的函数关系式并写出相应的自变量x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB于点M、N.

(1)如图1,MN⊥y轴吗?为什么?
(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=
12
(∠OBA-∠A)是否成立?为什么?
(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案