精英家教网 > 初中数学 > 题目详情

多项式x2+y2-6x+8y+7的最小值为 ________.

-18
分析:将原式配成(x-3)2+(y+4)2-18的形式,然后根据完全平方的非负性即可解答.
解答:原式=(x-3)2+(y+4)2-18,
当两完全平方式都取0时原式取得最小值=-18.
故答案为:-18.
点评:本题考查完全平方式的知识,难度不大,注意运用完全平方的非负性解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、当x,y为何值时,多项式x2+y2-4x+6y+28有最小值,求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、多项式x2-y2分解因式的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

11、多项式x2+y2-4x+2y+8的最小值为
3

查看答案和解析>>

科目:初中数学 来源: 题型:

在多项式x2+y2,-x2+y2,x2+(-y)2,2x2-
1
2
y2,(y-x)3+(x-y)中,能用平方差公式分解的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

一个整式与多项式x2-y2的差为x2+y2,则这个整式为(  )

查看答案和解析>>

同步练习册答案